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The statistical mechanical approach to Casimir problems for dielectrics separated by a vacuum gap turns out
to be compact and effective. A central ingredient of this method is the effect of interacting fluctuating dipole
moments of the polarizable particles. At arbitrary temperature the path-integral formulation of quantized
particles, developed by Høye-Stell and others, is needed. At high temperature—the limit considered in the
present paper—the classical theory is, however, sufficient. Our present theory is related to an idea put forward
earlier by Jancovici and Šamaj �2004�, namely, to evaluate the Casimir force between parallel plates invoking
an electronic plasma model and the Debye-Hückel theory for electrolytes. Their result was recently recovered
by Høye �2008�, using a related statistical mechanical method. In the present paper we generalize this by
including a constant permittivity in the description. The present paper generalizes our earlier theory for parallel
plates �1998�, as well as for spherical dielectrics �2001�. We also consider the Casimir force between a
polarizable particle and a conductor with a small density of charges, finding agreement with the result recently
derived by Pitaevskii �2008�.

DOI: 10.1103/PhysRevE.80.011104 PACS number�s�: 05.40.�a, 05.20.�y, 34.20.Gj, 42.50.Lc

I. INTRODUCTION

The large interest in the Casimir effect in recent years has
resulted in a flood of papers, most of which are concerned
with the field theoretical approach to the problem. This is
quite natural, and is in accordance with the spirit in the origi-
nal of Casimir paper �1�. Some general reviews of the Ca-
simir effect can be found in Refs. �2–5�. Quantum field the-
oretical methods have proven to be quite effective even in
the presence of dielectric media although there are funda-
mental problems here, especially regarding perfect conductor
boundary conditions at sharp surfaces �6�.

Now there exists an alternative and probably less known
alternative route to derive a theory for the Casimir effect,
namely, to start from statistical mechanics and regard the
effect as due to interacting fluctuating dipole moments of
polarizable particles. As shown by Brevik and Høye, the Ca-
simir force between a pair of polarizable point particles can
be recovered �7�. In this context, the path-integral formula-
tion of quantized particle systems was utilized. The method
had earlier been applied to polarizable fluid systems, by
Høye and Stell, and Thomson et al. �8�. Subsequent gener-
alizations led to the well-known Lifshitz formula for parallel
plates �9�. Similar evaluations were performed in Refs.
�10–12�.

We wish to emphasize that, as a general remark, the quan-
tum statistical mechanical method is quite compact and ef-
fective. For instance, the Casimir free energy due to the dis-
persion force between two polarizable particles as given by
Eq. �5.15� in �7� is derived in a way that according to our
view is simpler than the conventional field theoretical

method. The latter involves fourth-order approximation of
perturbation theory �13�. Moreover, we ought to point out
that the statistical mechanical approach opens new perspec-
tives in the sense that one avoids quantizing the electromag-
netic field itself. Instead, the field is playing the role of an
agent permitting the interaction between polarizable par-
ticles. The two pictures are physically equivalent �7,9,11,12�.

The topic with which we will be concerned with below is
related to earlier work of Jancovici and Šamaj �14�. They
realized that it should be possible to evaluate the Casimir
force between metallic plates by employing an electronic
plasma model. They considered accordingly charged par-
ticles at low density in a neutralized background, limiting
themselves to the classical �i.e., the high-temperature limit�
for which the Debye-Hückel theory of electrolytes is fully
applicable. Calculating the pair-correlation function, and
from that the local ionic density at the surfaces of the plates,
they were able to recover the conventional Casimir result for
real metals in the high-temperature limit. The issue of tem-
perature corrections to the Casimir force has been subject to
a lively discussion in the contemporary literature �15�. The
ionic plasma has also been extended to the quantum-
mechanical case by use of the path-integral formalism from a
statistical mechanical viewpoint �16�.

The recent paper of Høye �17� reconsidered the ionic
plasma in the classical limit, using the statistical mechanical
method in a different way to obtain the Casimir force. The
correlation function was used to directly evaluate the average
force between pairs of particles in the two plates and then the
total force was found by integration. This is the same method
used in Refs. �7,9�. The result was found to be in agreement
with Ref. �14�. A notable feature of this approach is that it
demonstrates how the modification of the density profile at
the surface is a perturbing effect that can be neglected to
leading order.
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In Ref. �17�, the two parallel plates �or slabs� were as-
sumed to be filled with ions but no dielectric properties due
to the medium itself were envisaged. The present paper pre-
sents an extension and generalization of the theory in �17�, in
the sense that the dielectric properties are included. That
means, we introduce permittivities � in the slabs. The two
permittivities are taken to be constant and equal. Magnetic
properties in the media are omitted. In the gap region be-
tween the plates, we assume a vacuum. Our method consists
in replacing polarizations by equivalent charges. That is, the
polarization P is taken equivalent to an induced charge den-
sity

�I = − � · P . �1�

This follows from the connection between the electric field
E, the polarization P, and the charge density �c,

� · E + 4� � · P = 4��c. �2�

When evaluating the Casimir force based upon the ionic fluid
correlation function, the induced charge can be considered as
a free charge. Accordingly, no separate charged dipole and
dipole-dipole correlation functions are needed. In addition,
the dielectric properties are expressed via the influence of the
permittivity upon the charge-charge correlation function.

In the next section we establish the basic formalism for
the pair-correlation function and thereafter, in Sec. III, derive
the Casimir force as a generalization of the expression found
earlier for the case where charges were absent �9�. In Sec. IV
we consider the force between a polarizable particle and a
slab �half space� containing free charges. The treatment in
that section is related to recent work of Pitaevskii �18�. Fi-
nally, in Sec. V we consider the Casimir interaction between
spherical dielectric shells and extend the theory given earlier
in Ref. �11� to the case where there are free charges present.

II. CORRELATION FUNCTION

To obtain the correlation function we start from the
Ornstein-Zernike equation �17�.

h�r2,r1� = c�r2,r1� +� c�r2,r����r��h�r�,r1�dr�, �3�

here extended to nonhomogeneous fluids. In this equation
h�r2 ,r1� is the correlation function, c�r2 ,r1� is the direct cor-
relation function, and ��r�� is the number density of charges.

It may be appropriate to give a brief account of the back-
ground for this equation. The correlation function or pair-
correlation function h�r2 ,r1� is related to the pair distribution
function g�r2 ,r1� through

��r1���r2�h�r2,r1� = g�r2,r1� − ��r1���r2� .

The g�r2 ,r1� is the probability density for one particle to
occupy the position r2 while another particle occupies the
position r1. For an ideal gas with uncorrelated particles, g
=��r1���r2�. Thus the h expresses deviations from the ideal-
gas value. For a uniform fluid ��r�=�=constant, and h
→h�r2−r1�. The above equation as originally introduced by
Ornstein and Zernike �19� serves as a definition of the direct

correlation function c�r2 ,r1�. In their investigation they
noted that the direct correlation function c for a fluid was
closely related to the pair interaction itself. In view of this,
Eq. �3� can be given a simple interpretation: the resulting
pair-correlation function h is the result of a direct correlation
c plus correlations via other particles as expressed by the
integral.

For weak long-range forces, the c�r ,r�� is to leading or-
der related to the interaction � in a simple way �20�,

c�r,r�� = − ���r,r�� , �4�

where �=1 /kBT, T is the temperature, and kB is Boltzmann’s
constant. This follows from the � ordering studied in Ref.
�20�, where � is the inverse range of interaction and the limit
�→0 is considered. In the present case this becomes exact
for large separations r−r� with particles located in separate
plates. However, for particles at close separation �in the same
plate� there will be deviations. For low densities they can be
neglected, in accordance with the Debye-Hückel theory for
electrolytes. For higher densities such deviations will mainly
change the inverse Debye-shielding length. This contributes
only to a minor change in the effective separation between
the plates �17�. We find no reason to consider this further
here, especially since we consider semiconductors with low
density of charges.

As the interaction follows from the electrostatic potential
between two charges, we have

�2c�r,r�� = 4��qc
2 1

��r��
��r − r�� , �5�

with ��r�� as the permittivity at position r�, and qc as the
ionic charge assuming one component for simplicity. It is
then assumed that the ions are neutralized by a uniform
background of counter ions.

Equation �3� can now be rewritten as

�2	 − 4��qc
2 1

��r�
��r�	 = − 4�

1

��r0�
��r − r0� ,

h�r,r0� = − �qc
2	 , �6�

where 	 is the electrostatic potential. Here we have replaced
r2 and r1 by r and r0, respectively. With parallel plates the
number density is

��r� = �� , z 
 0,

0, 0 
 z 
 a ,

� , a 
 z ,
� �7�

with equal densities �� constant� in the two media. By Fou-
rier transform in the x and y directions, Eq. �6� becomes

� �2

�z2 − k�
2 − ��

2		̂ = − 4�
1

��z0�
��z − z0� , �8�

where the hat denotes Fourier transform. Furthermore, we
have introduced the quantity ��, defined by
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��
2 = 4��qc

2�/� �9�

in the two media and ��=0 in the vacuum gap 0
z
a.
Physically, �� is the inverse Debye-Hückel shielding length.
The symbol k� is the wave vector transverse to the z direc-
tion. The solution of Eq. �8� can be written in the form

	̂ = 2�eq�z0�
1

�q�

e−q�z + Beq�z, z0 
 z 
 0,

Ce−qz + C1eqz, 0 
 z 
 a ,

De−q�z, a 
 z ,
� �10�

where q=k� , q�=
k�
2 +��

2. �For z
z0, the −q��z−z0� is to
be replaced by −q��z−z0� in the first line of Eq. �10�.� As the

boundary conditions require that 	̂ and ��	̂ /�z are continu-
ous, one finds for the coefficient of main interest

D =
4qe�q�−q�a

��q� + q�2�1 − Ae−2qa�
, A = ��q� − q

�q� + q
	2

. �11�

With this the pair-correlation function for free charges, for
z0
0 and z�a, is

ĥ�k�,z,z0� = − 2��qc
2De−q��z−z0�. �12�

III. CASIMIR FORCE

To obtain the Casimir force the ionic interaction �=��r�
in the vacuum is needed. This is the Coulomb potential �

=qc
2 /r. Its full Fourier transform is �̃=4�qc

2 /k2, consistent
with Eq. �5� with �=1. With k2=k�

2 +kz
2 this can be trans-

formed backward to obtain �recall that q=k��

�̂�k�,z − z0� = 2�qc
2e−q�z−z0�

q
. �13�

With q2=k�
2 =kx

2+ky
2, dkxdky =2�qdq, we now obtain for the

Casimir force per unit area, for the free ions,

f =
�2

2�
� ĥ�q,z,z0��z��q,z − z0�qdqdzdz0, �14�

where �z�=�� /�z, the hat denoting Fourier transform with
respect to the x and y coordinates. �We have used �fgdxdy

=� f̂ ĝdkxdky / �2��2 and the translational symmetry along the
xy plane.� cf. Eq. �6� in Ref. �17�� Equation �14� follows
from the general structure of the expressions for the Casimir
free energy and force established in Refs. �7,9�. In those
references the interaction was the dipole-dipole interaction
while the correlation function was the dipole-dipole correla-
tion function. In the present case, by contrast, those quanti-
ties are replaced by the charge-charge interaction and the
charge-charge correlation function.

With z−z0=u1+u2+a, �2=���
2 we obtain

f =
�2

2�
�

0



�− 2��qc
2�D�2�qc

2��
0

 �
0



�e−�q�+q��u1+u2+a�du1du2qdq

= −
�4

8��
�

0

 De−�q�+q�a

�q� + q�2 qdq . �15�

However, this expression is missing the contribution to the
force due to fluctuating dipole moments. In the evaluation of
the pair-correlation function we avoided this problem by us-
ing the permittivity. Here, we may use the free charge picture
of dipole moments where the induced charge density in
terms of polarization is given by expression �1�. Alterna-
tively, we can use the method developed by Høye and Stell
in their analysis of the ion-dipole fluid mixture where all the
correlations functions between ions and dipoles were ob-
tained for a uniform fluid �21�.

The polarization of a particle at position r can be written
as P=si��r−ri�, where si is the dipolar moment. The induced
charge �I as given by Eq. �1� will replace the qc factors in
both interaction �13� and correlation function �12�. But this
charge �I=−� ·P is distributed in space and should be con-

voluted with the point particle interaction �̂ and the correla-

tion function ĥ. Taking into account the Fourier transform in
the transverse directions and the exponentials in the z direc-
tion, together with the derivative of the delta function, we

find that at each end of �̂ and ĥ the qc should be replaced by

qc → h · si, h = ikx,iky, � q� ,

and

qc → h� · si, h� = ikx,iky, � q�� , �16�

respectively. For convenience we keep the notation of Ref.
�9�. Thus this h should not be confused with the correlation
function h introduced in Eq. �3�.� Now one needs thermal
averages. There is no correlation between ionic charges and
dipole moments si for the reference system �i.e., with the
ionic interaction absent�. For polar or polarizable particles
we assume isotropy so that

�ŝix
2 � = �ŝiy

2 � = �ŝiz
2 � =

1

3
, �ŝixŝiy� = 0, . . . ,

where the hat denotes unit vectors. To obtain the Casimir
force we need the average

Q = ��h · ŝi��h� · ŝi��� =
1

3
�h · h�

�� =
1

3
�k�

2 + qq�� =
1

3
q�q� + q�

�17�

�kx
2+ky

2=k�
2 =q2�. Note that this is the same as the square root

of result �6.27� of Ref. �9�, with q� replaced by q�. Further-
more, the dipolar density �d replaces the ionic density �. We
may now define the quantity y via
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3y =
4�

3
��d�si

2� = 4��d� , �18�

where � is the polarizability. Thus for the dipoles we alto-
gether have the replacement

4���qc
2 → 4���d�si

2�Q = 9yQ . �19�

This should be modified, however, by another factor ��
−1� /3y, which is present in Eq. �5.5� in Ref. �9� or in Eq.
�33� in Ref. �21�. This may be regarded as a contribution
from correlations between neighboring dipole moments in a
reference system where the ideal dipole-dipole interaction
�times −�� has been subtracted from the direct correlation
function. Thus we have

4���qc
2 → 3�� − 1�Q = �� − 1�q�q� + q� . �20�

From the free ions we have 4���qc
2=�2=���

2. Adding con-
tribution �20� we obtain

�2 → ���
2 + �� − 1�q�q� + q�

= ��q�
2 − q2� + �� − 1�q�q� + q�

= ��q� − q��q� + q� . �21�

Altogether, the resulting Casimir force will be the one in
which the �4 in Eq. �15� is replaced with the square of ex-
pression �21�. We find

f = −
1

2��
�

0

 Ae−2qa

1 − Ae−2qaq2dq , �22�

with A given by Eq. �11�. This expression is a simple gener-
alization of the situation with absence of dielectric properties
�17� or absence of charges �9�.

IV. FORCE BETWEEN A POLARIZABLE PARTICLE AND
A HALF SPACE WITH CHARGES

This is a situation earlier considered by Pitaevskii �18�.
We will reconsider it with the formalism developed above.
To simplify, the polarizable particle will be considered to be
confined in a thin plane or layer together with other particles
of the same kind at low density. Then the electrostatic prob-
lem will be as before except for the boundary condition
where now one of the half spaces �slabs� is removed and
replaced with the thin layer of polarizable particles of van-
ishing density not influencing the electric field. Thus, instead
of Eq. �10�, the solution of the electrostatic problem becomes

	̂ = 2��1

q
e−qz + Beqz, 0 
 z 
 a ,

De−q�z, a 
 z ,
� �23�

with the polarizable particle�s� located at z0=0. From the
usual boundary conditions one finds

D =
2e�q�−q�a

�q� + q
. �24�

The Casimir force is obtained by a modification of Eq. �15�.
First, one of the integrations is reduced to a thin layer of

width �d at u1=0. Second, modification �21� is needed with
dielectric media. Thus

4���qc
2 = �2 → ��q� − q��q� + q� . �25�

So for the half space

�2 → �2
2 = ��q� − q��q� + q� , �26�

while for the thin layer with no free charges, q�→q. Further,
the permittivity �1 of the thin layer is directly related to the
polarizability � and the density of dipolar particles �1�→0�
via

�1 − 1 = 4���1. �27�

So for the thin layer

�2 → �1
2 = 2��1 − 1�q2 = 8���1q2. �28�

Using Eqs. �24�–�28� in Eq. �15� we find �with �d=�du1�

f = −
�1

2�2
2�d

8��
�

0

 De−�q�+q�a

q� + q
qdq

= − ��1�d�
2�

�
�

0

 �q� − q

�q� + q
e−2qaq3dq . �29�

Now the number of particles per unit area is �1�d, so the
force upon each of them is f / ��1�d�. The corresponding in-
teraction potential V is determined from �V /�a=−f / ��1�d�.
Integration of Eq. �29� thus gives

V = −
�

�
�

0

 �q� − q

�q� + q
e−2qaq2dq , �30�

which is the result obtained by Pitaevskii �18�. See also the
comment of Geyer et al., and the reply of Pitaevskii �22�.

V. FREE ENERGY OF CONCENTRIC SPHERICAL
BODIES

Consider an inner sphere �ball� with radius a, and an outer
sphere with inner radius b��a� and outer radius at infinity.
The spheres have permittivity �. Between the radii a and b
there is a vacuum gap. So far this is the situation considered
by Høye et al. �11�. In that paper general expressions were
found, at arbitrary temperature, for nonmagnetic spheres in-
cluding both the transverse magnetic �TM� and the trans-
verse electric modes for nonzero Matsubara frequencies. In
the present work we want to extend this to the situation
where also free charges are present. As in the parallel-plate
situation we have to restrict the evaluation to the electrostatic
or the classical high-temperature case. With this limitation
the resulting free energy will be a straightforward extension
of previous results.

Employing spherical coordinates the solution for the po-
tential 	 �Eq. �6�� can be written as

	 = 	l�r�Ylm��,�� , �31�

where Ylm are the spherical harmonics. The radially depen-
dent term can be written as
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	l�r� = �e� + Bs�, r 
 a ,

Ce + C1s , a 
 r 
 b ,

De�, b 
 r .
� �32�

With no free charges �i.e., �=0�, Eq. �6� is the Laplace equa-
tion, and the functions e� and s� simplify to

e� � e �
1

rl+1 and s� � s � rl. �33�

However, with free charges present in the media the �� given
above in Eq. �9� will enter Eq. �6�. Then the solution for the
radial part becomes Riccati-Bessel functions with imaginary
argument. As 	l�r� should be finite at the origin and zero at
infinity, we can write

s� = rjl�kr� and e� = rhl
�1��kr� , �34�

with

− k2 = ��
2 = 4��qc

2�/� �35�

in the media. In vacuum k= i��→0, and we can put

e =
1

rl+1 and s = rl, �36�

since proportionality factors are not needed here.
One notes that Eqs. �32� and �34� are precisely those of

Ref. �11� for the situation with TM waves where Matsubara
frequencies K=−i��=2�n /� �n integer� were used. In that
case the imaginary values were k=� /c in vacuum and k
=
�� /c in the media. With this equivalence the free energy
associated with the mutual interaction between the inner and
outer spheres can be evaluated precisely as in Ref. �11�.
Since expression �32� for 	l does not determine its magni-
tude, we can use the method in Secs. IV and V of �11� to
obtain it indirectly, and thus obtain the eigenvalues of inter-
est.

For parallel plates we were able to do this directly,
through Eqs. �16�–�21� above, to obtain force �22�. By inte-
gration with respect to the separation a the corresponding
free energy in that case is found to be

�F =
1

2

1

�2��2� ln�1 − �q�2�qdq , �37�

which identify the eigenvalues �q=Ae−2qa.
To obtain the corresponding eigenvalues ��l with the con-

centric spheres, we write, similarly as in �11�,

D =
D0

1 − ��l
. �38�

The quantity D is to be determined from the continuity of 	l
and �	l� at the surfaces. This gives the equations

ea� + Bsa� = Cea + C1sa,

��ea�� + Bsa�� � = Cea� + C1sa�,

Ceb + C1sb = Deb�,

Ceb� + C1sb� = �Deb�� , �39�

where subscripts a and b denote the radial positions, and the
prime denotes differentiation with respect to r. Due to a
calculational error in �11� the corresponding Eqs. �33� in that
reference differ from those above in that � is replaced by its
inverse. The error may be related to the somewhat involved
discussion in �11� on the conditions for the transverse mag-
netic field and the related electric field for nonzero frequen-
cies.� Solving for D one also needs D0 to determine ��l. As
explained in Sec. IV of �11�, this can be obtained by consid-
ering single potential bonds between the two spheres. We
then first remove the inner sphere by putting a=0 to obtain
from the two last members of Eq. �39�

D = D0 = c2C, with c2 =
eb�sb − ebsb�

�eb�� sb − eb�sb�
. �40�

Then, removal of the outer sphere by putting b= and C1
=0 yields from the two first members of Eq. �39�

C = C = c1, with c1 =
��ea�sa�� − ea�� sa��

�easa�� − ea�sa�

, �41�

from which D0=c1c2. Finally solving the full set of Eqs. �39�
one finds D. This further used in Eq. �38� yields

��l =
��sasa�� − sa�sa����ebeb�� − eb�eb��
��easa�� − ea�sa����eb�� sb − eb�sb��

. �42�

With no free charges, ��=0, by which e�=e=1 /rl+1 and s�

=s=rl. Then ��l simplifies to

��l =
�� − 1�2�l + 1�l

��l + l + 1����l + 1� + l�
�a

b
	2l+1

, �43�

as found in Ref. �11�. The resulting free energy F is now the
zero frequency �K=0� TM mode term of Eq. �40� in �11�,

�F =
1

2�
l=1



�2l + 1�ln�1 − ��l� , �44�

with expression �42� inserted, where k is given by Eq. �35�.

VI. SUMMARY

With the use of a statistical mechanical method, the Ca-
simir force between dielectric slabs containing free ions �i.e.,
semiconductors� has been evaluated in the high-temperature
classical limit. Furthermore, for high temperatures the free
energy of the interaction between a polarizable particle and a
semiconductor slab has been obtained. Agreement with ear-
lier results of Pitaevskii is found �18�. Finally, in the same
limit the free energy of interaction between two concentric
semiconducting dielectric spheres separated by a vacuum
gap is found.
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